Description

Similar to an asynchronous motor with a wound rotor, it is constructed with one rotor (primary) and one stator (secondary). It is the rotor rotation between ± 45° which allows the voltage compensation (explained below). There is no mobile sliding contact, and the simple design ensures a high level of reliability.

Principle

The output voltage is obtained by the vectorial composition of:
- The primary voltage \((V_1, V_2, V_3)\)
- The secondary voltage induced in the stator \((V_a, V_b, V_c)\).
- Output voltage \(= U\) in ± U stator
 \(= V_1\pm V_a / V_2\pm V_b / V_3\pm V_c\)

Then the output voltage varies from \(V_1\cdot V_a\) to \(V_1+V_a\)
Directly dependant on the rotor position.

Applications References

VOLTAGE STABILIZATION

SATOA, Energie RM, Asecoa, Schneider, Saphymostel, Cham Palace, Satelma, Centraux téléphoniques SFEE, Houvenaghel Hennequin…

TEST PLATFORMS

Alstom, EDF Renardières, Haeffly, Merlin Gerin, Varilec…

FURNACE POWER SUPPLY

Kerlane, Santa Marina, Manville, Alcala…

BERNARD et BONNEFOND – 7 Allée Mathieu Murgue
Terrenoire – 42100 SAINT-ETIENNE France
Tel : 00 33 4 77 95 30 00 – fax : 00 33 4 77 95 78 06
Website : www.bernardbonnefond.com